Enzyme-induced staining of biomembranes with voltage-sensitive fluorescent dyes.

نویسندگان

  • Marlon J Hinner
  • Gerd Hbener
  • Peter Fromherz
چکیده

We consider the physicochemical basis for enzyme-induced staining of cell membranes by fluorescent voltage-sensitive dyes, a method that may lead to selective labeling of genetically encoded nerve cells in brain for studies of neuronal signal processing. The approach relies on the induction of membrane binding by enzymatic conversion of a water-soluble precursor dye. We synthesized an amphiphilic hemicyanine dye with and without an additional phosphate appendix at its polar headgroup. The fluorescence of these dyes is negligible in water but high when bound to lipid membranes. By fluorescence titration with lipid vesicles it was shown that the phosphate group lowers the partition coefficient from water to membrane by more than an order of magnitude. By isothermal titration calorimetry, we showed that the dye phosphate was a substrate for a water-soluble alkaline phosphatase following MichaelisMenten kinetics. In a suspension of lipid vesicles, the enzyme reaction led to a fluorescence increase due to enhanced membrane binding of the product dye in accord with the MichaelisMenten kinetics of the reaction and the partition coefficients of substrate and product. We successfully tested the staining method by fluorescence microscopy with individual giant lipid vesicles and with individual red blood cells. In both systems, the membrane fluorescence due to bound hemicyanine was enhanced by an order of magnitude, proving the feasibility of enzyme-induced staining with voltage-sensitive dyes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetically encoded fluorescent sensors of membrane potential.

Imaging activity of neurons in intact brain tissue was conceived several decades ago and, after many years of development, voltage-sensitive dyes now offer the highest spatial and temporal resolution for imaging neuronal functions in the living brain. Further progress in this field is expected from the emergent development of genetically encoded fluorescent sensors of membrane potential. These ...

متن کامل

Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes.

This review presents three examples of using voltage- or calcium-sensitive dyes to image the activity of the brain. Our aim is to discuss the advantages and disadvantages of each method with particular reference to its application to the study of the brainstem. Two of the examples use wide-field (one-photon) imaging; the third uses two-photon scanning microscopy. Because the measurements have l...

متن کامل

Screening Fluorescent Voltage Indicators with Spontaneously Spiking HEK Cells

Development of improved fluorescent voltage indicators is a key challenge in neuroscience, but progress has been hampered by the low throughput of patch-clamp characterization. We introduce a line of non-fluorescent HEK cells that stably express NaV 1.3 and KIR 2.1 and generate spontaneous electrical action potentials. These cells enable rapid, electrode-free screening of speed and sensitivity ...

متن کامل

Role of a voltage-sensitive calcium channel blocker on inhibition of apoptosis in sensory neurons of cultured dorsal root ganglia in adult rat

Introduction: Under pathological conditions, abnormal increase in intracellular calcium concentrations is believed to induce cell death. In the present study, a voltage-sensitive calcium channel blocker (loperamide hydrochloride) was used to investigate its role in inhibition of apoptosis in sensory neurons of cultured spinal dorsal root ganglia (DRG). Methods: L5 DRG from adult rats were di...

متن کامل

Measuring the Induced Membrane Voltage with Di-8-ANEPPS

Placement of a cell into an external electric field causes a local charge redistribution inside and outside of the cell in the vicinity of the cell membrane, resulting in a voltage across the membrane. This voltage, termed the induced membrane voltage (also induced transmembrane voltage, or induced transmembrane potential difference) and denoted by DeltaPhi, exists only as long as the external ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 108 7  شماره 

صفحات  -

تاریخ انتشار 2004